La respuesta es: depende. Pero, ¿depende de qué? Inicialmente las observaciones astronómicas indicaban que la edad del universo no era consistente con los datos de edades de las estrellas más viejas en nuestra Galaxia. ¿Está en peligro el modelo 'Big Bang' del origen del universo? ¿Cuál es la edad real de nuestro universo? ¿Cuál es el estado actual de la cosmología frente a las nuevas observaciones realizadas por el telescopio Hubble de la NASA y el Observatorio Hiparco de la Agencia Espacial Europea?
Las teorías sobre de la estructura del universo a gran escala se basan en las observaciones cuidadosas de los astrónomos con instrumentos cada vez más poderosos. Es interesante anotar que cada vez que se perfecciona una técnica de observación o se usa un nuevo instrumento para observar el cosmos, aparecen sorpresas. Cuando Galileo, por ejemplo, usó por primera vez el telescopio para escudriñar las profundidades del cosmos, vio que la superficie de la Luna tiene irregularidades, que Júpiter tiene satélites y que el Sol tiene manchas.
El telescopio espacial Hubble es el instrumento más poderoso que se ha construido con el objetivo de ver el cosmos libre de las perturbaciones y efectos producidos por la atmósfera. Con este nuevo telescopio se han podido ver los efectos gravitacionales de posibles agujeros negros, se ha medido muy precisamente la distancia a cúmulos vecinos de galaxias [y por lo tanto se ha podido inferir la edad del universo] y ha permitido avanzar en el problema de la materia oscura del universo.
El debate sobre la edad del universo
El universo no puede ser más viejo que las estrellas que lo forman, fue el argumento que lanzaron los físicos en contra del modelo del 'Big Bang' cuando éste fue propuesto en la década de los años 30. Según el modelo del Big Bang, el universo es finito y tuvo un comienzo donde la materia existente alcanzó una densidad y temperatura supremamente alta.
Recordemos que el modelo se propuso como una posible explicación a las observaciones de las abundancias de elementos livianos en el universo. Ya para los primeros años de la década de los 30 se había establecido con base experimental, que el universo está formado en un 75% de Hidrógeno y un 25% Helio [los elementos más pesados como los que observamos en la Tierra constituyen menos del 1% de la materia en el universo]. Esta observación necesita una explicación. En 1947 los físicos George Gamow, Ralph Alpher y Robert Herman de la Universidad de Georgetown en Washington propusieron que los núcleos de helio en el universo fueron formados por fusión nuclear en las primeras épocas de un universo que tuvo un comienzo caliente y denso. La posibilidad del origen del universo en una gran explosión, además, incorporaba de forma natural las observaciones de Hubble que demostraron en 1929 que el espacio está en expansión. Este modelo fue bautizado por Fred Hoyle en forma despectiva como el 'Big Bang' o gran explosión.
En los cálculos originales de Gamow, Alpher y Herman aparecía una componente de energía en forma de radiación. En un gas de electrones, protones y neutrones a muy alta energía tal como Gamow suponía que era el universo temprano, la energía en forma de radiación electromagnética es la que domina el sistema. Más tarde, cuando el universo se expande, la energía en forma de radiación deja de ser dominante y su correspondiente temperatura decrece. Esa energía en forma de radiación electromagnética [radiación cósmica de fondo, RCF] proveniente de los primeros instantes del Big Bang es una de las predicciones más fuertes del modelo.
Por esos años, el modelo estacionario [es decir que el universo no tuvo un comienzo sino que por el contrario es infinito] promovido por Hoyle, Bondi y Gold tendía a ser favorecido por razones teóricas ya que así como las variables espaciales exhiben simetría en el universo [este es homogéneo e isótropo] se esperaría que así mismo sucediera con el tiempo. Pero un comienzo en el tiempo rompería dicha simetría. Otro golpe fuerte en contra del Big Bang fue la inconsistencia de la edad calculada del universo cuando se comparaba con la edad de la Tierra: el universo resultaba más joven que la misma Tierra! más adelante se descubrió un error en el calculo de la velocidad de expansión [constante de Hubble] y se pudo corregir dicha inconsistencia. Cuando en 1965 los radio-astrónomos Penzias y Wilson del laboratorio Bell de Nueva Jersey, Estados Unidos, descubrieron accidentalmente la radiación cósmica de fondo, el modelo de Big Bang comenzó a ser tomado en serio y los mismos Hoyle y Gold reconocieron las virtudes del modelo de Big Bang y las limitaciones del modelo estacionario por ellos creado.
La constante de Hubble
Vivimos en un universo que cada vez se hace más grande, es decir el espacio está en expansión. La geometría del universo es tal que si uno mide la distancia que separa dos galaxias cualesquiera, ésta aumenta en el tiempo. El aumento en la separación entre cualquier dos galaxias se debe a que existe una velocidad relativa entre ellas y entre más alejadas se encuentren mayor será la velocidad relativa entre ellas. Por ejemplo, la velocidad con la cual se aleja una galaxia a una distancia de 1 millón de años-luz de nosotros sería de 15 a 30 Km/segundo. Una galaxia a 2 millones de años luz se alejaría con el doble de velocidad, y así sucesivamente. Este hecho fue observado por el astrónomo norte americano Edwin Hubble en 1929 y a la constante de proporcionalidad que da la velocidad en función de la separación se le llama constante de Hubble H0:
Velocidad = H0 * Distancia
Hubble descubrió esta ley midiendo la velocidad y la distancia de muchas galaxias en direcciones arbitrarias. La velocidad se obtiene mediante el corrimiento hacia el rojo de las líneas en el espectro de la luz proveniente de las galaxias. La distancia se calcula a partir de la luminosidad absoluta de estrellas variables del tipo Cefeida en la galaxia en cuestión.
Las estrellas variables del tipo Cefeida tienen la propiedad de cambiar su luminosidad intrínseca de forma periódica [de 1 a 50 días] y además, su luminosidad viene determinada por el período de variabilidad. A mayor período mayor brillo, tal como fue descubierto por la astrónoma Henrietta Leavitt en 1912.
Midiendo el período de variabilidad de una Cefeida variable se puede entonces conocer su luminosidad intrínseca. Comparando el brillo intrínseco de una estrella con el brillo aparente [la cantidad de luz medida por un telescopio en la Tierra] se puede hallar la distancia a la estrella, ya que el brillo aparente de una estrella es el brillo intrínseco disminuido por un factor que depende del inverso de la distancia al cuadrado:
brillo aparente = brillo intrínseco / r2
De esta manera, las estrellas Cefeidas variables sirven como indicadores de distancia y son usadas para establecer una escala de distancias. Sin embargo, para que sea útil el proceso previamente descrito, la escala de distancias se debe calibrar haciendo mediciones de Cefeidas variables en galaxias cuya distancia sea previamente conocida con mucha precisión mediante procedimientos diferentes. El problema de la calibración de distancias es el que ha dado mayor trabajo a los astrónomos que quieren medir la constante de Hubble.
Los cosmólogos tienen gran interés en el valor de H0, debido a que ellos pueden decir cual es la edad y tamaño del universo a partir de H0. Para ver la relación entre estas cantidades basta con pensar qué pasa si en este momento nos devolvemos en el tiempo haciendo que la expansión sea ahora hacia dentro.
Como la velocidad de expansión es conocida por la ley de Hubble podemos preguntarnos cuánto tiempo tomaría el universo en alcanzar el punto en el que todas las galaxias compartan el mismo lugar [separación cero o singularidad].
Un cálculo muy sencillo revela que el tiempo desde radio cero hasta hoy [edad del universo] es el inverso de H0. Con
H0 = 15 [Km/segundo] por Millón de años-luz
= 1/[20,000 millones de años],
donde se ha usado 1 año-luz = 300,000 [Km/segundo] * 1 año,
obtenemos para la edad del universo, T = 1/H0 = 20 mil millones de años. En orden de magnitud este resultado coincide con el número obtenido siguiendo un procedimiento más riguroso. Es muy común en la literatura científica encontrar la constante de Hubble H0 expresada en unidades de [Km/segundo] por Mpc, con 1 Mpc igual a un millón de parsecs que es equivalente a 3.26 millones de años luz. En estas unidades los valores de H0 que se han medido usando distintos métodos resultan agrupados en valores altos entre 75 y 80, y en valores bajos entre 45 y 50. Las edades del universo resultantes de estos dos grupos serían de 8 a 11 mil millones de años para el primero y de 18 a 20 mil millones de años para el segundo grupo.
¿Qué tan lejano es Virgo?
Los ladrillos o 'átomos' con los cuales está construido el universo son las galaxias. La Vía Láctea, que es donde se encuentra el Sol con la Tierra, es una espiral formada primordialmente por nubes de Hidrógeno y por 100 mil millones de estrellas como el Sol. Toda esta materia se encuentra distribuida en una región en forma de disco con un radio de 50 mil años-luz y participa de un movimiento de rotación a una velocidad de una vuelta en 300 millones de años. Se ha observado que debido a la acción de la gravedad, las galaxias tienden a formar grupos. Estos grupos o cúmulos de galaxias son los que forman las